

Комбинированные воздушные клапаны с механизмом, предотвращающим ускоренное заполнение Тип FOX 3F - RFP

Воздушный клапан CSA тип FOX 3F RFP гарантирует надлежащее функционирование трубопроводных систем, обеспечивая стравливание воздушных пробок в процессе обычной работы системы, а также осуществляя выпуск и подачу в трубопровод больших объемов воздуха при наполнении и дренировании системы. Дополнительно данная модель всегда поддерживает безопасный объем выходящего воздуха, предотвращая риск возникновения гидроударов. Кроме того, эта модель всегда будет поддерживать отток воздуха в безопасных пределах, без риска образования гидравлического удара.

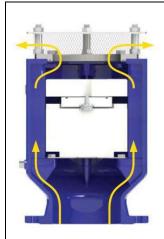
ТЕХНИЧЕСКИЕ ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

- Бесконтрольное заполнение трубопроводов и кратковременные колебания неизбежно порождают быстрое закрытие воздушных клапанов, установленных вдоль системы, с последующим повреждений. Воздушный клапан SCA FOX RFP будет автоматически регулировать отток воздуха, тем самым снижая скорость набегающего потока воды, снижая риск гидравлического удара.
- Разбрызгивание в процессе закрытия и риск затопления воздушного клапана вследствие малого давления и возможной высокой скорости заполнения, избегается благодаря конструкции кпапана
- Корпус клапана выполнен из высокопрочного чугуна и содержит внутренние направляющие, обеспечивающие точное центрирование поплавка, номинальное давление до 40 бар.
- Подвижный блок состоит из главного поплавка и верхнего диска, соединенных вместе запатентованным механизмом выпуска воздуха CSA выполненного из AISI 316 и дополнительным плунжером.
- Конструкция сопла и фиксатора прокладки механизма выпуска воздуха, специально разработаны CSA таким образом, чтобы избежать воздействия давления на материал прокладки, тем самым предотвращая процесс старения и увеличивая срок службы данного соединения на весь период эксплуатации.

ПРИМЕНЕНИЕ

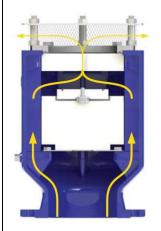
- Магистральные трубопроводы
- Системы распределения воды
- Системы орошения
- В основном, данная модель используется в комбинации с клапаном CSA AS на участках трубопроводов перед подъемами и в верхних и нижних точках, для контроля за заполнением.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

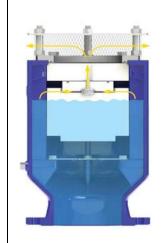

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-5 Смопенск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

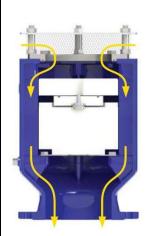
Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тvла (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93



ПРИНЦИП ДЕЙСТВИЯ


Выпуск в систему большого объёма воздуха.

В процессе заполнения трубопровода водой необходимо удалить из системы воздух. FOX 3F RFP, благодаря аэродинамическому полнопроходному корпусу и дефлектору, позволит избежать предварительное закрытие клапана в этой фазе работы клапана.


Контролируемый выпуск воздуха.

При превышении определенного уровня перепада давления воздуха, неконтролируемое заполнение может привести к разрушению. В механизме RFP в таких случаях верхний поплавок поднимется, автоматически регулируя выпуск воздуха и заполнение системы водой.

Удаление воздуха в процессе обычной работы системы.

В процессе работы образующийся в трубопроводе, воздух собирается в верхней части клапана, уровень воды снижается и нижняя часть поплавка опускается, открывая сопло для выпуска скопившегося воздуха.

Впуск в систему большого объёма воздуха.

В случае дренажа системы или повреждении трубопровода. необходимо обеспечить поступление в систему необходимого объема воздуха, равного объему вытекающей воды, для предотвращения образования вакуума и как следствия повреждения трубопровода и всей системы.

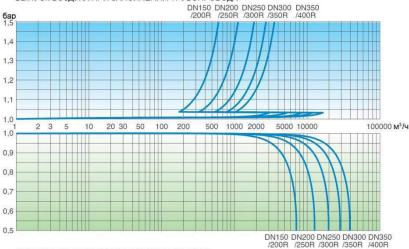
ОПЦИИ

Прерыватель вакуума версии FOX 2F RFP, предназначен для впуска больших объемов воздуха и выпуска воздуха с контролируемой скоростью. предназначен только для впуска и выпуска больших объёмов воздуха. Данная модель рекомендуется для установки перед подъёмами, на продолжительных участках трубопроводов смонтированных с подъёмом, в «сухих» пожарных системах, а также в любых системах, в которых не требуется отвод воздуха.

Погружные исполнения клапанов серия SUB, доступны для версий FOX 3F RFP и 2F RFP. Поставляются с патрубком для отвода воздуха. Конструкция была специально разработана изза необходимости использования воздушных клапанов в зонах с риском затопления, причем дополнительно требовалось исключить попадание загрязнений в трубопровод. Еще одним из преимуществ клапанов серии SUB является возможность избежать выброса из-за рывков, возникающих в момент резкого закрывания воздушного клапана.



У Исполнение с единственной функцией выпуска воздуха серия EO, доступны для версий FOX 3F RFP и 2F RFP. Применение клапанов серии EO может потребоваться в системах, уровень жидкости в которых может опуститься ниже трубопровода или в тех случаях, когда по требованиям проекта, впуск воздуха в систему не допускается.


ДИАГРАММА РАСХОДА ВОЗДУХА

Данные диаграммы расхода воздуха были созданы путём лабораторных испытаний, математического анализа и приведены с учётом коэффициентов запаса.

ВПУСК ВОЗДУХА ПРИ ДРЕНАЖЕ ТРУБОПРОВОДА ВЫПУСК ВОЗДУХА ПРИ ЗАПОЛНЕНИИ ТРУБОПРОВОДА

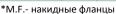
ВПУСК ВОЗДУХА ПРИ ДРЕНАЖЕ ТРУБОПРОВОДА

Рабочие условия

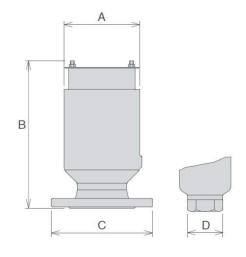
Вода макс.60°С;

Макс. давление 40 бар; Мин. давление 0,3 бар;

С мин. давлением от 0,19 бар по запросу.

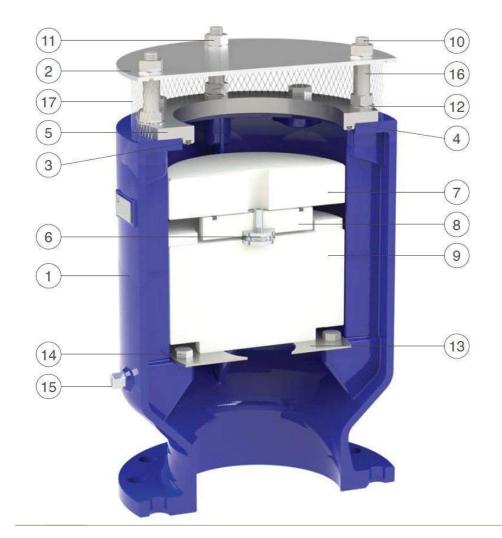

Стандарт

Разработано в соответствии с EN-1074/4 или AWWA C-512. Фланцы по EN 1092/2.


Покраска в кипящем слое по RAL 5005.

Изменения и прочие исполнения стандарта фланцев и покраски деталей по запросу.

ПРИСОЕДИНЕНИЕ дюймы / мм	A MM	B MM	C* MM	C** MM	D MM	MACCA KF
Резьба 1"	93	217	=	=	CH 45	3,3
Резьба 2"	118	277	=	=	CH 75	6,1
Фланцы 50	118	290	165	165	=	8,1
Фланцы 65	118	290	185	185	=	8,6
Фланцы 80	142	322	200	205	=	11,1
Фланцы 100	180	364	220	235	=	18,5
Фланцы 150R	218	435	285	300	=	34,5
Фланцы 150	261	500	285	300	=	49,0
Фланцы 200R	261	500	340	340	=	51,0
Фланцы 200	333	574	340	375	=	94,0
Фланцы 250R	333	574	=	400	=	102,0
Фланцы 250	414	735	=	450	=	121,0
Фланцы 300R	414	735	=	485	=	127,0
Фланцы 300	492	850	=	515	=	240,0
Фланцы 350R	492	850	=	580	=	250,5
Фланцы 350	570	995	=	580	=	295,0
Фланцы 400R	570	995	=	660	=	304,0



^{**}F.F.- литые фланцы

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Серия «М», исполнение с крышкой и сеткой из нержавеющей стали, типоразмеры от 1" до DN400.

Серия «С», исполнение с крышкой из чугуна, типоразмеры от 1" до DN150.

СПЕЦИФИКАЦИЯ МАТЕРИАЛОВ

Nº	НАИМЕНОВАНИЕ	МАТЕРИАЛЫ	ОПЦИИ
1	Корпус	Высокопрочный чугун	
2	Крышка	Нерж.сталь AISI304	Нерж.сталь AISI316
3	Кольцевая прокладка	NBR	EPDM/Витон/Силикон
4	Кольцевая прокладка	NBR	EPDM/Витон/Силикон
5	Седло	Нерж.сталь AISI304	Нерж.сталь AISI316
6	Устройство контроля воздуха	Нерж.сталь AISI316	
7	RFP поплавок	Полипропилен	
8	Верхний поплавок	Полипропилен	
9	Основной поплавок	Полипропилен	
10	Штифт	Нерж.сталь AISI304	Нерж.сталь AISI316
11	Гайка	Нерж.сталь AISI304	Нерж.сталь AISI316
12	Шайба	Нерж.сталь AISI304	Нерж.сталь AISI316
13	Диффузор	Нерж.сталь AISI304	Нерж.сталь AISI316
14	Болт	Нерж.сталь AISI304	Нерж.сталь AISI316
15	Дренажный клапан	Нерж.сталь AISI303	Нерж.сталь AISI316
16	Проставка	Нерж.сталь AISI304	Нерж.сталь AISI316
17	Сетка фильтра	Нерж.сталь AISI304	

Прерыватель вакуума исполнение Тип FOX 2F

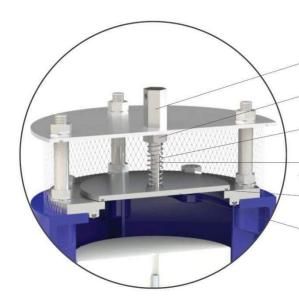
Прерыватель вакуума исполнение Тип FOX 2F позволяет впускать и выпускать большой объем воздуха в процессе заполнения или дренажа системы. Данное исполнение обычно рекомендуется перед подъёмами, на участках продолжительного подъема, сухих

системах пожаротушения и везде, где выпуск воздуха не требуется.

Погружные исполнения клапанов FOX - SUB

Доступно для исполнений FOX 3F и 2F с отводом для линии удаления воздуха. Конструкция разработана для применения в местах с риском затопления и с целью защиты от попадания загрязнений в основной трубопровод. Другое назначение, защита от эффекта разбрызгивания вследствие быстрого закрытия воздушного клапана.

Стандартный материал комплекта SUB выполнен из пластика, по запросу возможно изготовление из других материалов.



Исполнение с единственной функцией выпуска воздуха серия ЕО

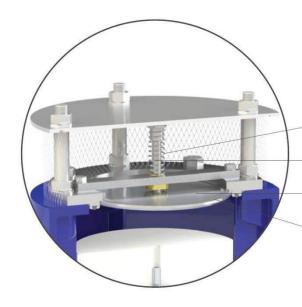
Доступно для исполнений FOX 3F и 2F. Наиболее важное применение EO когда уровень жидкости может опускаться ниже магистрального трубопровода или когда по требованиям проекта впуск воздуха в систему недопустим.

Направляющая гайка из нерж.стали

Контргайка из нерж.стали

Пружина из нерж.стали

Направляющий шток из нерж.стали


Кольцевое уплотнение NBR, EPDM, витон, силикон

ЕО диск из нерж.стали

Исполнение с единственной функцией впуска воздуха серия Ю

Доступно только для исполнений FOX 2F. Наиболее важное применение IO когда по требованиям проекта выпуск воздуха из системы недопустим.

Пружина из нерж.стали

Направляющий шток из нерж.стали

|○ диск из нерж.стали

Кольцевое уплотнение NBR, EPDM, витон, силикон

СОВРЕМЕННЫЙ ИСПЫТАТЕЛЬНЫЙ СТЕНД

Разработанный с целью воссоздания реально существующих условий в современных системах водоснабжения, тестовый стенд итальянского завода CSA позволяет в динамике осуществлять испытания автоматических регулирующих клапанов, регуляторов давления прямого действия, воздушных клапанов и быстродействующих клапанов защиты от гидроударов.

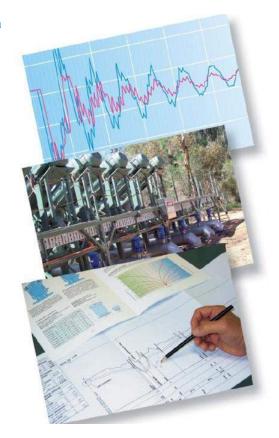
Благодаря использованию высокопроизводительной насосной установки оснащенной передовыми преобразователями частоты и расходомерами, испытательный стенд позволяет в режиме реального времени наблюдать происходящие преобразования давления и расхода. На данном стенде в том числе возможно смоделировать гидроудар и записать параметры его сопровождающие, для подтверждения эффективности быстродействующих клапанов защиты от гидроудара производства CSA. Свободно программируемый контроллер и регулируемая станция, позволяют, пошагово меняя

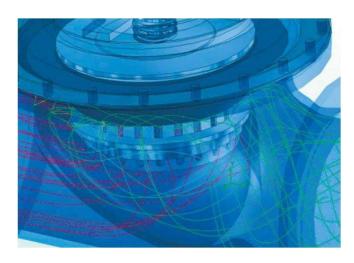
параметры, определить зоны чувствительности клапанов и выбрать наиболее оптимальные параметры для работы клапанов в реальных условиях. Благодаря этим важным и мощным инструментам клапаны могут быть настроены, смоделированы и установлены в соответствии с требованиями проекта обеспечивая отличную производительность и точность.

ПРОЦЕСС ТЕСТИРОВАНИЯ

Все наши клапаны проходят полный цикл испытаний в соответствии со стандартами EN Европейских норм для того, чтобы убедиться в их механических свойствах, герметичности соединений, а также для проверки соответствия реальной и расчетной пропускной способности. После прохождения каждый клапан маркируется с помощью металлической бирки или наклейки, а затем регистрируется в установленном порядке в документации производителя.

CSA HYCONSULT


Анализ вероятности возникновения гидроудара


CSA Hyconsult

CSA Hyconsult была основана для того, чтобы обеспечить проектировщиков и консультантов, участвующих в проектировании водопроводной и канализационной системы, точной и уникальной технической поддержкой. CSA Hyconsult специализируется в гидравлическом моделировании и анализе переходных процессов исключительно посредством использования современных вычислительных средств и продвинутых алгоритмов. Моделирование позволяет с высокой степенью точности предсказать реакцию системы на события при самых различных условиях, при этом, без риска повреждения существующей системы. С помощью моделирования можно устранить проблемы в существующих или вероятных условиях, что позволяет произвести оценку как наиболее оптимально инвестировать время, деньги и материалы в исследуемый проект.

CSA всегда рассматривал технические знания как необходимый инструмент для проведения исследований для разработки и внедрения инноваций. Проектно-конструкторский отдел CSA постоянно стремится улучшать эксплуатационные характеристики выпускаемой продукции и всегда ищет новые решения для удовлетворения потребностей наших клиентов. Двадцатипятилетний опыт в расчёте и конструировании клапанов с использованием передовых вычислительных средств, сотрудничества с внешними организациями, а также наличие современного испытательного оборудования для практической проверки теоретических результатов, являются гарантией нашего профессионализма и надёжности.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (3843)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69